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The principal aim of this paper is to derive constitutive equations describing a 
magnetic fluid. The fluid is modelled as a dilute suspension of small spheroidal 
magnetic particles in a non-magnetic solute. The conditions for stability of fluid 
(against coagulation) are discussed and upper and lower bounds for particle sizes are 
determined. For a stationary fluid, the bulk magnetization is calculated with 
allowance for particle-particle interactions. The full stress tensor is determined for 
a flowing fluid that experiences an externally applied magnetic field. Both the flow 
and field may have arbitrary spatial and time dependences provided only that the 
lengthscale of spatial variations is large compared with particle dimensions, and that 
the timescale is long compared with the particle relaxation time due to Brownian 
motion. These results are applied to shear and pipe flows, where comparison with 
experiment is made, and to flow induced by rotating magnetic fields. Finally the 
damping of ultrasound having a characteristic period of the same order as the particle 
relaxation time is considered. 

1. Introduction 
In  this paper, we calculate the stress tensor for a dilute monodisperse suspension 

of spheroidal magnetic particles, for which the Reynolds number based on particle 
size a is small. A variety of particle shapes is permitted, ranging from disks and 
spheres to rods. It may be shown that, even for a suspension of arbitrary-shaped 
particles, the tensorial character of the particle stress is the same as that predicted 
here, and so it should be representative of a real magnetic fluid. The result is then 
applied to some simple and practically important flow problems including some in 
which the appearance of a non-symmetric stress tensor has caused much confusion 
in the past. 

Magnetic fluids have received some theoretical attention previously ; Brenner & 
Weissman (1972) calculated the stress tensor for a suspension of spherical magnetic 
particles in the limit of weak magnetic field (and our calculation agrees in this case). 
This stress tensor is deficient, however, because for spheres there is no coupling 
between the ambient straining motion and particle rotation. 

Schliomis (1968, 1972), by means of a phenomenological approach, calculated the 
stress tensor for a general time-dependent flow and magnetic field, by including the 
magnetic effects in the Navier-Stokes equation as a modified pressure and viscosity, 
with, in addition, two terms representing the bulk force and couple on the fluid due 
to the magnetic field. This formulation gives rise to a very special form of the stress 
tensor (not unlike that for spherical particles). But even in this case there are 
inconsistencies ; for example, gradients of the magnetic field are included in the bulk 
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force, but the contribution to the stress from the time-dependence of the magnetic 
field as seen by moving particles is neglected. 

Martsenyuk (1973) used a semiquantitative approach to calculate the stress tensor 
for a magnetic fluid of spheroidal particles under the influence of a homogeneous 
magnetic field, but made several ad hoc assumptions about the form of the particle 
orientational probability function, and in addition neglected the crucially important 
diffusion stress (this same approximate technique has also been used by Martsenyuk, 
Raikher & Schliomis 1973). The results of Martsenyuk (1973), when applied to 
spherical particles, are within 20 yo of the exact solution. However, for non-spherical 
particles, where the coupling between rotary and straining motions is important, the 
results are incorrect even for zero magnetic field. 

We consider a suspension of identical spheroidal magnetic particles, in a fluid that 
is assumed to be Newtonian, non-conducting and non-magnetic, concerning ourselves 
only with particles that are magnetic dipoles (i.e. the model presented neglects 
quadrupole and higher magnetic moments). Hydrodynamic interactions between 
particles will be neglected throughout, which gives an adequate approximation, since 
the volume concentration c of particles is in practice of the order of 10 yo. Magnetic 
interactions are also neglected, except in $3  where they are investigated for a static 
magnetic fluid. By an order-of-magnitude argument, Rallison (1978) showed that 
rotational effects on the suspended particles are very much greater (O(L/a) ,  where 
L is a macroscopic lengthscale) than translational ones, so only orientational statistics 
will be considered. 

This work begins ($2) with a discussion of the physical mechanisms in a magnetic 
fluid and the introduction of a ‘standard magnetic suspension’. We then ($3 )  
calculate the bulk magnetization of a magnetic fluid in the limit of small volume 
concentration correct to O(c2), and in $4 determine the full particle stress tensor, 
including the effects of time-dependent and inhomogeneous magnetic fields. Two 
applications of the theory are given in $35 and 6, in which the stress tensor is applied 
to the industrially important problem of shear and pipe flows, and to flows induced 
by rotating magnetic fields. Finally, in $ 7  we investigate the theory and applications 
of the propagation of ultrasound through a magnetic fluid where the characteristic 
period of the signal is of the same order as the Brownian relaxation time. 

2. Physical mechanisms in a magnetic fluid 
2.1. Stability 

For a magnetic fluid to be practically useful, it must be stable; that is, it  must not 
separate out by the formation of aggregates during the experiment, or the working 
life of the sample. This imposes strong restrictions on the acceptable values of 
interparticle forces, and so on the particle size distribution. 

Particles interact directly by three mechanisms : steric repulsion, van der Waals 
attraction and magnetic forces. The steric repulsion is an ‘osmotic ’-like barrier, due 
to a thin coat of surfactant. This is applied to prevent the van der Waals forces from 
generating aggregates; both these forces are short range (of the order of a few 
nanometres), the range of the van der Waals forces necessarily being the shorter for 
a stable magnetic fluid. 

An estimate for the maximum allowable particle size can be made by insisting that 
the magnetic interactions should be too weak to cause aggregation. The particles of 
a typical magnetic fluid have O(1) aspect ratios (the ratio of maximum to minimum 
dimensions) and so the interaction energy of two particles is dominated by the 
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dipoledipole interaction. So, for the purposes of estimating the magnetic interaction 
energy I of two particles, we may take them to be uniformly magnetized spheres, 
giving 1 

47c,uO r3 &=- (m,*m2-3(mlaP) (m2*P)), 

where m,, m2 are the magnetic dipole moments of the two particles, having separation 
r in direction P, and ,uo is the magnetic permittivity of a vacuum. Let I ,  be the energy 
required to separate two cold particles (i.e. neglecting Brownian-motion effects) from 
their minimum energy configuration (i.e. touching nose to tail) to infinite separation. 
For simplicity we assume that each particle has volume V, and internal magnetization 
density I ;  then I2 v, 

I , = - .  
W O  

So, if Brownian agitation is to be sufficiently strong to keep the particles apart, it 
is required that I ,  be less than or of the order of kT (where k is Boltzmann’s constant, 
and T the absolute temperature). 

For a magnetic fluid to be considered as a continuum, it is necessary that one phase 
does not move significantly relative to the other while it is in use. However, a ‘typical ’ 
magnetic field O(kt/IV,) ,  which in a practical sense for magnetic fluids is one that 
induces a significant magnetization (to be defined in $2.2), varying on a lengthscale 
L, will eventually give rise to a particle distribution varying on the same lengthscale. 
Making a simple estimate of the drift velocity ?)drift by consideration of a spherical 
magnetic particle, we obtain kT 1 

vdrift = (rG z) * 
where p is the viscosity of the solvent. The time for the number density of particles 
to vary appreciably in an O(L) distance is thus O(6npaL2/kT), and for a ‘standard’ 
magnetic fluid (as will be defined in $2.2) kT/6npa is of the order of 5 x lo-” m2 s-l, 
so, with L of the order of 1 cm, this time is of the order of one month, showing that, 
for all practical or laboratory timescales, the slippage may be neglected and a 
magnetic fluid that is initially homogeneous will remain so. 

2.2. Orders of magnitude 

It is helpful at this stage to define a ‘standard magnetic suspension’, which is typical 
of those used in experiments. Then, in the rest of this paper it is understood that any 
reference to dimensional quantities will be for our standard suspension, unless 
explicitly stated otherwise. A common magnetic solute used is magnetite, having 
magnetization 0.5 T, and most other solutes used are of comparable magnetization, 
so we shall take this as the particle magnetization (excluding the surfactant layer). 
We take the ambient fluid to be water, as it often is, and assume the system is a t  
‘room temperature ’ (the exact value not being very important). If the surfactant 
layer is assumed to be 2 nm thick, the stability condition W ,  = I , /kT 5 1 is satisfied 
for particles of typical dimension 10 nm, which we shall take as the standard size. 
Another important parameter is the volume fraction c of particles (including 
surfactant layer) which is in the range 0.05 < c < 0.25 for most magnetic fluids. 

From a mathematical point of view, it is convenient to assume that all the particles 
are the same shape and size, and, although in practice there is a size distribution of 
particles, effects due to this polydispersivity have relatively minor physical import- 
ance. Further, we shall assume that the particles (including the surfactant layer) are 
spheroidal with axis ratio r ,  and with magnetization fixed in the direction of the axis 
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of symmetry. Some justification is possible for the latter from considerations of the 
crystal structure, and, dynamically, particle asymmetries are most significant in this 
case. However, i t  does imply a lower bound on particle size, typically of the order 
1 nm, above which the thermal fluctuations of the direction of the magnetic dipole 
moment relative to the particle may be ignored. 

In  $2.1, we discussed the balance of the magnetic interaction between individual 
particles and Brownian motion; we now consider the balance between an externally 
applied magnetic field H a n d  Brownian motion, so far as i t  affects particle orientation. 
The energy of interaction between a particle and an external magnetic field is -ma H,  
where m is the magnetic dipole moment of a particle with magnitude V, I .  Thus, for 
the magnetic field to have a significant orientating effect, this interaction energy must 
be of the order kT. This suggests that  we should non-dimensionalize H with respect 
to  iiT/m, where m = JmJ, and take the non-dimensionalized dipole moment to  be a 
unit vector in the direction of the internal magnetization. When = 1, this gives 
a magnetic field of 2 x lo4 A/m (250 gauss) for our standard suspension. This is, in 
practice, a strong magnetic field, but much stronger fields are experimentally feasible. 

We shall see in $4 that  the tensorial quantity A describing the effect of viscous 
forces on particle orientation is not simply Vu (where u is the fluid velocity), but rather 
Q+ [(rz- 1 ) / ( r 2 +  I ) ]  E (where Q and E are respectively the symmetric and antisym- 
metric parts of ( V U ) ~ ) .  The relative importance of viscous and Brownian forces 
on particle orientations is described by the Pkclet number P. We thus define the 
PBclet number by 

where llVu(( is the magnitude of a typical element of Vu, and D is the rotational 
diffusivity of particles due to Brownian motion. We also non-dimensionalize SL and 
E with respect to llVull, and all stresses with respect to p llVull. As D is of the order 
los s-l, the PBclet number is small for most flows of practical interest, suggesting that 
we non-dimensionalize time with respect to D. 

3. The bulk magnetization 
Each particle experiences a couple m x H due to the local magnetic field, which 

tends to align the particles with it, and a disorienting Brownian couple. The balance 
between the two is a function of 14, and the degree of overall alignment gives rise 
to the bulk magnetization, M .  

There is a difficulty in calculating M ,  in that  the magnetic field as seen by a particle 
is not simply the ambient magnetic field, but also includes a contribution due to 
particle-particle interactions. Assuming a homogeneous suspension M = n(m) ,  
where n is the particle number density and ( ) denotes an ensemble average, the 
precise meaning of which will be discussed in $3.1. However, M can be calculated 
in the limit of small concentration, where the orientational probability necessary for 
evaluating ensemble averages has a comparatively simple form. I n  $3.1 we consider 
the leading-order approximation to  M ,  i.e. neglecting particle-particle interactions ; 
and in $3.2 we consider the first correction due to  interactions. 

3.1. Bulk magnetization to leading order in concentration 

At this order, each particle can be considered separately, and interacts only with the 
ambient field H,  which is assumed uniform on the particle lengthscale. I n  consequence, 
this result is valid independently of the particle shapes, since this affects only 
particle-particle interactions. 
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If d is the Hamiltonian of a system in equilibrium, the probability P of the system 
being in an infinitesimal region d Q  of phase space is given by the Maxwell-Boltzmann 
distribution 

where a is a normalization constant, chosen to  make the total probability equal to 
unity, and Q is the state of the system. 

Statistical equilibrium of fluid suspensions is achieved when none of the macroscopic 
state variables of interest changes in time. A magnetic fluid with a constant ambient 
magnetic field and no bulk fluid motion satisfies this condition, even though it  can 
be described from the non-equilibrium point of view of translational and rotational 
diffusions (which imply a local entropy gradient) competing with the orientating 
effect of the ambient field. The Maxwell-Boltzmann distribution is therefore applicable 
if and only if there is an energy function for the system. 

We are now in a position to calculate the leading-order approximation to M 
explicitly. First we will consider the case of no ambient flow, and secondly we will 
show how we can also obtain an expression for the bulk magnetization for a magnetic 
fluid in a uniform straining motion. 

We define angular ensemble averages as averages over all orientations, weighted 
by the orientational probability distribution P(m), wihich is obtained by applying 
(3.1) in this case, and is given by 

P(Q) = ae+(Q)/kT, (3.1) 

ernen. P(m) = -- 
4n sinhH ' 

this gives 
I. 

M =  n J  mP(m) d2m 
all orientations 

= n m 9 ( H )  I?, 
where 9 ( H )  = coth H- 1/H is the Langevin function (Langevin 1905), and I? is a 
unit vector in the direction of H. 

It is possible to  apply the Maxwell-Boltzmann distribution to a system containing 
a single ellipsoidal particle in an ambient straining motion E and ambient magnetic 
field H,  since there exists an energy function for both the magnetic and hydrodynamic 
forces. In  non-dimensional units, the energy is given by 

This can again be substituted in the Maxwell-Boltzmann distribution, so enabling 
us to calculate the bulk magnetization M ,  although in general the integral appearing 
in the equation corresponding to (3.2) cannot be evaluated simply. However for 0(1) 
magnetic field the effect of the straining motion is small, O(P),  in which case 
perturbation methods may be used. 

One might ask whether i t  is possible to achieve a similar result for a general linear 
flow f ie .  including a rotational part a). Unfortunately this is not possible as the 
steady state for such a system is not one of zero flux in orientation space, and so no 
single-valued energy function exists. We shall, however, tackle the problem of a 
magnetic fluid in a general linear flow in the limit of small PBclet number in $4. 

3.2. Magnetization including effect of pa,rticle interactions at O(c2)  
The inclusion of interparticle interactions is not at all as simple as one might imagine. 
It would a t  first sight seem reasonable to include only the effect of interactions of 
close particles (those within a few diameters of each other). The fraction of particles 
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in close pairs is O(c2), in close triplets it is O(c3) ,  and so on. This implies we only have 
to consider pair interactions of particles. To calculate the magnetization to O(c2), we 
need to find the orientational probability distribution for a test particle and use this 
probability to calculate angular ensemble averages. It might be thought that this 1 

could be done by simply defining an approximate energy of the system, including 
the direct interactions of particles with the ambient magnetic field and pair 
interactions of particles, then+substituting this in the Maxwell-Boltzmann equation 
and integrating out all but the orientation of the test particle. Unfortunately, this 
does not work; this is because the pair interaction energy for particles of separation 
r is O ( l / r 3 ) ,  and this cannot be integrated over all non-overlapping positions (it 
diverges logarithmically as r tends to infinity). This implies that the total effect of 
distant particles is always felt, no matter how distant they are. In  short, for these 
purposes, we cannot talk about an infinite expanse of magnetic fluid without in some 
sense considering its ' shape ', a difficulty encountered frequently in suspension- 
mechanical problems. We use the technique of O'Brien (1979) to resolve the difficulty. 

Consider a test particle in a region of magnetic fluid with an ambient field H, 
uniform over the interparticle lengthscale. As seen by the test particle, distant regions 
of the magnetic fluid are almost indistinguishable from a continuum, whereas, closer 
to the test particle, fine detail (e.g. the orientations and positions of particular 
particles) have an important effect. Thus it is possible to take an arbitrary surface 
S (containing volume V ,  with outward unit normal n)  around the test particle such 
that the magnetic fluid outside S is sufficiently far away that it can be replaced by 
a continuum and only the magnetic fluid inside has to be dealt with discretely (see 
figure 1).  

Outside V we can use the following form of Maxwell's equations : 

W . B = O ,  W A H = O ,  B=H+M, 

where all the equations above have their usual meaning, and po has been set equal 
to 1 .  Defining magnetic charge p by 

p = W*H, 

we have O =  W*B= W*H+W.M=p+W'M. (3.3) 

As regards the region interior to V ,  the effect of the magnetization outside V may 
be replaced by a magnetic charge concentrated on the surface S ,  denoted by ps. Then 
from (3.3) we have that ps is equal to M n  and defining the magnetic field in V due 
to ps to be H l ( r ) ,  we have 

So the magnetic field in V due to the ambient field H a n d  the magnetic fluid outside 
V is H+ Hl(r). The above surface integral can be replaced by a volume integral if 
we analytically continue M from outside V to the inside; or equivalently consider 
M to represent the averaged magnetization over all space. This can be done by 
constructing a spherical surface 8, around the test particle and letting V* be the 
volume between S and So; then we find, by use of the divergence theorem, that 



The constitutive equations for a magnetic Jluid 193 

. c 

. c 

. c 

. . 

. c 

~ T 

FIGURE 1.  Diagram defining volume around the test particle. 

Then, evaluating the integral over So, we have 

We must now deal with the particles in V discretely; this is possible by consideration 
of the Maxwell-Boltzmann equation for the system inside V. Consider N +  1 particles 
in V with magnetic dipole moments m,, ..., m, and positions to, ..., I,; then the 
probability of this configuration is 

P(mo, ..., mN; to, ..., r N )  ocexp { mo~(H+H,(r,))+Emi~(H+Hl(r,))-~}, 1 

N 

where U is the energy associated with particle interactions in V. 

pairwise interaction terms in U ,  giving 
To find the O(c2) correction to the Langevin function, we only need consider 

1 u = - E b,,, 
2 i*, 

where (mi * mj - 3 (mi * 3) ( mj P) ) . 1 
4np, r3 

b, = ~ 

It is convenient to  define w =  H+&M, which is simply the average magnetic field 
over all points outside of particles, and Hi = Hl(ri)-QM; then the Maxwell- 
Boltzmann distribution becomes 

P(mo ,..., m,; r, ,..., r,) acexp{m,*W)exp Z m , * H  exp{-+Z8,j>,  {: -I i,j 

where 8ij = 8,- ( 1 / 2 N ) m , * q  and has been constructed so that (btj), the average 
value of bij over V, vanishes to  leading order in c. 

Since the exponential function is absolutely convergent, we may expand the 
exp { -+Xi,, g,,} factor, and integrate term by term over all variables except m,. This 
gives the orientational probability function P(mo) of a single particle accurate to O(c)  
as being 

P(m,) oc P,(m,) 1 +- P(mo) S(&ol) d2+, d3r, + O(c2) , (3.4) ( ;,I 1 
where P,(m,) = a, ernoeW (which is the simple Langevin probability function with H 
replaced by @ and S(x)  = ex - x- 1. The term that produced the divergence in the 
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naive calculation vanishes (to leading order) by construction, and so P(mo) is 
independent of the shape of V .  

The cross-terms in the expansion of the exponential are O(c2) after integrat,ion, as 
they localize two or more of the ri integrals ; also for similar reasons we are able to 
replace go1 by b,,, giving an O(c2)  error in P(mo).  

The magnetization to O(c2)  is thus given by 

M = M ,  rho P(mo) d21i?,, s 
where M ,  = nmg. The evaluation of this integral is difficult analytically, but we 
are able to evaluate it asymptotically. We assume that the suspension is stable ; this 
implies that  the interaction energy I,, is small, so not many particles are in close 
proximity to one another. We shall now replace h'(8',,) by in equation (3.4) for 
P(mo);  and after some algebra we obtain an approximate expression for the 
magnetization, viz 

M 
- = Yl ( H  + +M) { 1 + c Wi f ( H )  + O( c fl, C' )} . 
Ma2 

(3.5) 

Here W, = &12Vo/po kT is the stability parameter 8,/kT introduced in $2.1, and 

where the functions Y n  are defined recursively by 

with Y , ( Z )  = 1,  Y , ( x )  = Y ( x ) .  

The function f ( x )  has the asymptotic limits 

f ( x )  -&r2 as x+O, 

and has maximum value 0.008 at x z 3. Since for any real magnetic fluid c 5 0.5 and 
W, 6 1 ,  the factor containing f ( H )  in equation (3.5) for the magnetization will always 
be close to unity ; this implies that  the main contribution to  the magnetization from 
particle interactions is due to the increase in magnetic field, as seen by a particle, 
caused by the continuum-like behaviour of distant particles. 

In  this calculation of the magnetization, we only had to  make the assumption of 
small concentration to deal with the detailed structure of the magnetic fluid close 
to the test particle, but the effect of this is seen to  be much smaller than the 
contribution from distant particles; so we would expect, for a stable suspension 
(W, 6 i ) ,  the magnetization for all values of c to be given approximately by 

This expression is interesting in that i t  gives rise to the possibility of a non-zero 
magnetization even if the ambient field H i s  zero; i.e. the magnetic fluid as a whole 
is ferromagnetic below some 'Curie temperature', T,. It should be emphasized that 
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we are referring here to a property of the magnetic fluid and not a property intrinsic 
to the particles. Equations of the form of (3.6) were used by Weiss & Fox (1926) to 
explain ferromagnetism in metals, but did not give agreement with experiments. In  
fact the direct dipole interactions were of the order of 1000 times too small to explain 
the experimental results ; this was because the main interactors were quantum- 
mechanical in nature. But, for a magnetic fluid governed by classical mechanics, the 
Weiss formula is seen to  be applicable. 

We define the Curie temperature T, for an isolated volume of magnetic fluid as the 
temperature below which there exists a steady bulk magnetization, even when there 
is no externally applied magnetic field. This definition of the Curie temperature is 
not only a function of the magnetic fluid itself but also of the shape of the bounding 
volume through the ambient magnetic field. To demonstrate this we shall consider 
two geometries, namely rod-shaped and spherical volumes. 

Rod-shaped volume 
Consider a uniformly magnetized rod with magnetization in the direction of the 

axis of symmetry. In  this case, zero externally applied magnetic field implies that 
H = 0, and (3.6) has two solutions for the magnetization if T < ~ c ( P V o / p o k ) .  
However, this does not necessarily imply that this critical temperature is a Curie 
temperature, unless we are able to  show that the solution with M = 0 is unstable. 
To investigate this we must consider the time evolution equation for M which may 
be derived simply from the time-evolution equation for P, which will be considered 
in detail in $4. Making the same assumptions as for the derivation of (3.6) and 
linearizing the equation for P about the isotropic probability distribution we find, 
in dimensional form, 

& f = 2 D  ( - ( ___ l2 VO) - 1) M ,  

from which we deduce that the M = 0 solution is always unstable when another 
solution exists, and so the Curie temperature for the system, T, = &I2 Vo/po k ) .  

Spherical volume 

applied field is given by 

9 PokT 

The magnetic field H inside a uniformly magnetized sphere with no externally 

1 
H = - - M ,  

3p0 
and substituting this into (3.6) we find that the only solution for the magnetization 
for all T is M = 0. This does not, however, exclude the possibility of non-zero 
magnetization in small domains, such as those found in iron, for example. 

If we examine the stability condition derived in $2.1 for a system a t  its Curie 
temperature, we find that we require c = 0 ( 1 ) ,  in which case we would expect most 
magnetic fluids to be prone to aggregation. So the analysis given above is only valid 
either qualitatively or for short times. 

4. Stress tensor for a dilute magnetic fluid 
I n  this section the particle stress tensor for a magnetic fluid is calculated in the 

limit of small PBclet number to O ( c ) ,  so each particle can be treated as if alone in 
the ambient flow and magnetic field. Although we shall only consider the case of a 
monodisperse suspension of spheroidal particles, the results of this section can be 
easily generalized to a polydisperse suspension by a simple averaging process. 
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4.1. Probability distribution for a non-equilibrium system 

As mentioned in $3.1, there are many situations where the Maxwell-Boltzmann 
distribution for particle orientations is inapplicable. In  this subsection we derive a 
diffusion equation satisfied by the orientational probability density function P. It is 
permissible to write this function as P(m, t), as the orientation of an axisymmetric 
particle is specified by the direction of its principal axis, and so the orientation space 
is the surface of a sphere. 

Since the particles of the magnetic fluid are much larger than the molecules of the 
ambient fluid, individual collisions of fluid molecules with a suspended particle give 
rise to a very small change in the orientation of the suspended particle. So the 
trajectories of individual particles in orientation space are well approximated by 
smooth curves and thus the probability density can be described in continuum terms. 

IP(m,t)d2m = 1 

P(m, t )  is normalized so that 

for all t ;  the continuity of P(m, t )  in orientation space gives 

where F is the probability flux and V is the two-dimensional gradient operator in 
orientation space. Using an extension of Einstein’s (1905) argument, it can be shown 
that the effect of Brownian motion on the evolution of P(m,t)  is equivalent to 
applying a (dimensional) couple LB = - k T V  log (P(h, t))  to each particle (Brenner 
1967). The tendency for the applied magnetic field to align particles with it is 
represented by a (dimensional) couple LM = mHL, where I represents taking the 
perpendicular part with respect to m (i.e. contracting once with (/-ah)), and the 
contribution to the (dimensional) angular velocity from hydrodynamic interactions 
between particles and the ambient flow is 

(Jeffrey 1922). Summing the contributions of these effects after translating couples 
into angular velocities via the orientational mobility b(r), the full (dimensional) 
probability flux becomes 

*h+bmH-kTVlogP(h,t)  

In terms of the above, the orientational diffusivity D is given by 

D = bkT. 

Substituting F into (4.1) and using the non-dimensionalizations of 52.2, we find 

aP(mJ)+V. P a+-€ -mP(m,t)+HP(m,t)-VP(m,t) = 0, 
at i ( ::;: 1 I 

where V takes the perpendicular part of its operand. 
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4.2. Particle stress tensor 

In the rest of this section we shall make the simplifying assumption of small PBclet 
number, neglecting all terms O(P2). This is reasonable for any macroscopic system 
having timescales very much greater than the Brownian timescale O(l/D) (i.e. of 
order 10+ s). 

It is convenient to split the stress tensor u into symmetric and antisymmetric parts. 
The symmetric part is calculated via the particle stresslet, whereas the antisymmetric 
part can be calculated directly from consideration of the bulk magnetization and 
applied field. 

Antisymmetric part of the stress ua 
We consider the couples on a small fluid element V having surface S; the couple 

due to the fluid and particle stress must be exactly balanced by the couple due to 
the applied magnetic field. The couple due to contact stress is given by 

where n is the outward normal of S. The contribution from the symmetric part of 
the stress is zero as it is contracted with the antisymmetric alternating tensor E. Using 
the divergence theorem, (4.3) becomes -jS,~:uadV, which must equal the total 
magnetic couple on V, namely j, n(m)  A H d  V ,  where n is the number density. Taking 
the limit as V tends to zero, we find 

(4.4) 

where n(m) can be replaced by the bulk magnetization M .  Such situations of 
suspensions under applied couples were first considered by Batchelor (1970). 

Symmetric part of the particle stress 

There are three contributions for the symmetric part of the particle stress, from 
straightforward hydrodynamic forces, from direct Brownian couples and from 
magnetic couples. The stresslet exerted by one particle on the fluid can be written, 
in dimensional form, as 

aa = #nn.*((m) A H), 

where Do is the rotational diffusivity for a sphere of volume V,, C is a particle tensor 
introduced by Batchelor (1970), and B is a symmetric traceless tensor first used by 
Bretherton (1962). 

We expand P(m, t )  as a power series in P :  

P(m,t)  = Po(m,t)+Pl(m,t)+O(P2),  

where Po(m, t )  is simply the probability distribution in the case of zero flow, i.e. 

and Pl(m, t )  is O(P). Then (4.5) can be written, dimensionally, as 
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In  computing the ensemble average of this form for the stresslet, the V-operator in 
the Brownian term can be turned around by integrating by parts; this gives the 
symmetric part of the (dimensional) particle stress as 

( n S )  = pc (C),: E - 3pD, c( (V. B),  + (H,. B),)  

(Rallison 1978), where (#)( E jd2mP,(m, t)  # for any function qi of orientation space. 
In  this expression 

(C),: € = 4(A,( f i r i r f i r i r ) , :  € + Bo( (+fi),*€+ €. ( f i f i ) , )  + C, 6, 

A,, B, and C, being functions of axis ratio alone as defined by Batchelor (1970), 

and 

v - 5  = 
r2- 1 
r2+1  

-6- rirrir+ isotropic term, 

r2-  1 
r2+ 1 

H,. B = __ (Hl rir + fin,). 

Notice that, although the contribution to the stresslet from the Brownian motion 
would vanish if the perturbation probability were zero, the fact that  i t  is small, O(P), 
does not mean that its contribution will be small. The contribution of the Brownian 
motion is in fact as large as that of the hydrodynamic term because the Brownian 
term contains a factor Do which is large, O(P-l) times the size of the rate-of-strain 
tensor; this fact was unfortunately overlooked by Martsenyuk (1973). 

4.3. Particle stress tensor for the case of steady and homogeneous magneticjield 
In  this subsection we calculate the full stress tensor for a magnetic fluid with an 
applied magnetic field constant in the Lagrangian sense (i.e. constant in the particle 
frame of reference) in the small-P6clet-number limit. It is not necessary, however, 
to assume that the flow is also constant in the Lagrangian sense, provided that its 
timescale of variation is no larger than the convective timescale. I n  this case, the 
perturbation to the probability density function is O(P2), and so the appropriate form 
of f4.2) is 

V *  P Q+-€ .mP(m,t)+WP(m,t)-VP(m,t) = 0. I ( ::;: I 
V*(P, H-VP,) = - P V *  Po a+- r2-1E)),  ( ( r2+1 

Again expanding P(m, t )  in terms of the P6clet number, we find that the equation 
for Pl(m, t )  is 

where Po is exactly the probability density function in the case of no flow. Writing 
q5 = Pl/Po, we have 

V * ( P , V # ) = P V *  Po Q+-E . ( ( :ti: 
Since # depends linearly on Q + [ ( r2-  l ) / ( r 2  + l)] E, it must be of the form 

where T is only defined up to an isotropic term, and, on substitution into equation 
(4.6), we find 

V 2 T + H V T  = mH,-3mm. (4.7) 



The constitutive equations for a magnetic fluid 199 

It is helpful to split T into symmetric and antisymmetric parts Ts and Ta 
respectively, and we find that the equation for the symmetric part can be solved 
exactly, giving Ts = &(mm-(mm),).  

We have used the fact that ( T ) ,  = 0 because our particular choice of Po implies 
f Pl(m, t )  d2m = 0. The equation for the antisymmetric part is 

V2Ta+ H*VTa = t (mH- Hm),  

which implies that Ta must have the form 

Ta = A(m.H)  (mH- Hm), 

and after some algebra we arrive at  the following equation for the scalar function 
A(m*H) : 

Changing variables from m * H  to 0, where cost9 = m.H/IW, we find that A ( 0 ;  H )  is 
given by 

A”H2,+A’(H2,-4Hll)-A(2+HII) = t. 

A”- A’(H sin 0- 5 cot 0) - A(2 + H cos 6 )  = 8, (4.8) 

where a prime now denotes d/dO. The boundary conditions are regularity of A a t  0 = 0 
and 7c. The function A ,  which was assumed to be independent of 0 in the theory of 
Martsenyuk (1973), can be calculated numerically for all values of H,  or asymptotically 
in the limit as H tends to zero, giving 

A(e; H )  - -++;,ccos 0) H -  (A +& cos2 e)  ~2 + (A cos e +& Cos3 0) ~3 + o ( ~ 4 ) .  

The limit as H tends to infinity will be considered later. 
We are now in a position to evaluate the various contributions to the particle stress 

discussed in 54.2; we find, in dimensional form, that the full particle stress tensor 
is given by 

ap 

P C  
- = F , ( E : R I ~ ~ R  

+ F ~ ( E -  RA+ RE. 12) 

+ F3(sz*1QA+Rsz*12) 

+ F~ ( E* AA- RE* 12) 

+ F5(sz*RR-AQ*12), (4.9) 

+ F2 E 

where the dimensionless functions F,, ..., F,, described in terms of non-dimensional 
variables, are 
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The functions 7g(H) and 7$(H) depend on the probability perturbation due to the 
R part of the ambient flow field, and can be expressed in terms of the function A(8;  H )  
of (4.8) as follows: 

7 g ( H )  = - ( A ( 8 ;  H) [3H2(3 cos2 8 - 1 - 2 cos4 8) + 18H(cos 8- cos3 8)] )o ,  

T ~ ( H )  = 3 ~ y 4 e ;  H) (cOs20- 1 1 ) ~ .  

Using the asymptotic form of A(8;  H )  as H+O, we find 

T ~ ( H )  - &H2+O(H4), 

T$(H) - 2$P-&H4+O(H6) 

as H + O .  Also T ~ ( H )  and T&(H)  both tend to 3 as H+m. 
Many authors have used the results of Martsenyuk (1973), who derived an 

expression for the particle stress tensor similar to (4.9), but one consequence of his 
ad hoe assumptions is that his function corresponding to 7&n(H), on which the stress 
tensor depends for all axis ratios, differs from that given here in the second term. 

4.4. The effect of time-dependent magnetic Jield 
If the magnetic field varies on an O( 1 )  (Lagrangian) timescale as seen by a particle, 
there is an additional perturbation at O(P) to the probability, which is thus as 
important as the ambient flow. Since to first order in PBclet number the equation 
for Pl(m, t )  is linear, the additional probability perturbation due to a time-varying 
magnetic field is additive. Writing the probability perturbation due to the time- 
varying magnetic field as Po+, and using (4.2), we obtain the following evolution 
equation for + : 

v~+++H.$ = (4.10) 

It is convenient to solve (4.10) by means of a decomposition into two cases: = 0, 
i.e. the magnetic field is changing its direction but not its strength, and & parallel 
to H,  i.e. the magnetic field is changing its strength but not its direction. Since + is 
linear in &, these two special cases can be superposed to give the general solution. 

Case (a ) ,  H = o 
This implies that it is possible to move into a rotating frame in which & = 0. Since 

we can neglect time derivatives of Vu, and the Stokes-flow equations neglect all 
inertial effects, this transformation does not invalidate any of the equations of $4.3. 
In effect, we have replaced the rotating magnetic field by an additional rotational 
part of the ambient flow, and the particle stress tensor in this case is thus given by 
(4.9) with every occurrence of S2.A replaced by R2.A-l?. 

Case ( b ) ,  &parallel to H 
In this case i t  is possible to solve (4.10) analytically, giving 

e- H sin 0 I--- d8 + const) H, 1 1 
$ = (Bcoth H log (cosec 8- cot 8) --log sin 8- H H sinh H sin 8 

(4.11) 
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where 8 is again defined by cos 8 = A - m  and the constant is determined by ($)o = 0 
(i.e. the perturbation probability has zero mean). 

We can now calculate the corresponding contributions to  the particle stress tensor, 
as in $4.3, to give the following general result for the particle stress tensor in a 
homogeneous magnetic field : 

up 
- = (F~(E:AA,-R~H)AA 
c 

+ F,(E. AA+ RE- A, 
+F2E 

+ F3 ( (G? A- A, A+ A( 51 * A- A, ) 
-+ F,(E. AA- RE. A, 
+ F,((G?.A-~AA-A(G?~A-A,). (4.12) 

Hence the inclusion of time dependence introduces only one new function, namely 

Do r2-  1 
R o ( H ; r )  = Rl(H)-- D r2+1’ 

representing $ evaluated at H = l), which has the asymptotic form in the limit 

R,(H)  = $H+o(H~).  as H tends to zero 

On examining (4.12) we see that the tensorial dependence of the particle stress 
tensor on E, G?, A, appears to be deficient only in a term proportional to G?. 
However, from equation (4.4), we know that the antisymmetric part of the stress 
tensor is proportional to  ~ ‘ ( ( m )  A w). Since ( m )  can only depend tensorially on G? 
in the combination Q*A, the only antisymmetric term in the particle stress tensor 
containing G? is proportional to  G?*AA-AG?*ff. Thus the tensorial dependence of 
the particle stress tensor for spheroidal particles is complete. 

4.5. Effect of space-varying magnetic field 

Static magnetic Jluids 
If the magnetic field is a function of position, x, there is an additional body force 

density 9 acting on the fluid 
9 = M(H)*VH. (4.13) 

For a static magnetic fluid, we can calculate this force to  O(c2) using the expression 
for the bulk magnetization calculated in $3.2. I n  this case, M(H) is parallel to H ,  
and if we also assume that V A H = 0 (i.e. no free electric currents), we find 

.F = M ( H ) V H .  

F = - V p  rn? 
This can be integrated to give 

where p m  is a ‘magnetic pressure’ given by 

p ,  = - jr M ( h )  dh. 

Using the expression for the bulk magnetization given in (3.5), and neglecting the 
O(c2WE) term (as its maximum contribution is about 0.2 yo for c as large as 0.25), we 
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FIGURE 2. Comparison of theory with the experimental data (shown as 0) of Kamiyama et al. (1979), 
for a weight concentration of 25%. The solid line is obtained from (4.14). and the dotted line is 
the O(c)  result. 

find a particularly simple correction to the standard O(c)  result, given dimensionally 
as 

p ,  = nET { log (y ) + 2c W, P ( H )  + O(e2, c W t )  . 1 (4.14) 

A possibly more accurate result could be obtained by integrating (3.6) directly, 
although this integral cannot be performed analytically. 

Comparing (4.14) with the experimental data of Kamiyama et al. (1979) in figure 2, 
where it was necessary to fix the scale of H as the exact particle sizes were not 
known, we find remarkable agreement. 

When solving problems containing free surfaces, it  is not possible to include 
magnetic pressure in the hydrodynamic pressure, as they do not satisfy the same 
boundary conditions a t  the free surface. One such problem concerns the instability 
of a flat free surface with a uniform normal magnetic field (Cowley & Rosensweig 
1967). 

It is possible, a t  O(c2), for there to exist additional inhomogeneities in the magnetic 
field H due to variations in temperature or number density. In  this case we can write 
the magnetic field as H =  H,+cH,, 

where H, is a homogeneous part of the magnetic field and cH, is an O(c)  inhomogeneous 
perturbation. Similarly, the magnetization can be expanded as 

M = cM, + c2M2. 

in which case the force density in the magnetic field is given by 

9 = cM, * VH, + c.~M,* VH,  + c2M2 * VH, + O(c3) .  (4.15) 

The second term in this expression for 9 models the effect of the int,eraction of the 
basic magnetization with the perturbed magnetic field, which is an effect not present 
a t  all a t  leading order in c. I n  the problem of the instability of a free surface in 
the presence of a non-uniform magnetic field, both the O(c2) terms in (4.15) are non- 
zero because the free surface can be considered as a surface on which the number 
density makes a discontinuous jump from a finite value to  zero. 
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H 65 
0.0 o.oO0o 
0.1 0.0050 
0.2 0.0199 
0.3 0.0445 
0.4 0.0783 
0.5 0.1209 
0.6 0.1716 
0.7 0.2296 
0.8 0.2943 
0.9 0.3645 
1 .o 0.4396 
1.2 0.6005 
1.4 0.7700 
1.6 0.9420 
1.8 1.1113 
2.0 1.2742 
2.5 1.6371 
3.0 1.9266 
3.5 2.1471 
4.0 2.3118 
4.5 2.4344 
5.0 2.5264 
6.0 2.6507 
7 .O 2.7278 
8.0 2.7789 
9.0 2.8148 

10.0 2.8412 

4 
O.ooO0 
0.0022 
0.0090 
0.0201 
0.0355 
0.0549 
0.0783 
0.1053 
0.1356 
0.1690 
0.2052 
0.2845 
0.371 1 
0.4624 
0.5563 
0.6510 
0.8820 
1.0940 
1.2814 
1.4438 
1.5834 
1.7032 
1.8956 
2.041 1 
2.1540 
2.2439 
2.3167 

R, 
O . o o 0 0  
0.0399 
0.0794 
0.1180 
0.1552 
0.1908 
0.2244 
0.2557 
0.2844 
0.3105 
0.3339 
0.3721 
0.3994 
0.4166 
0.4250 
0.4261 
0.4059 
0.3682 
0.3256 
0.2846 
0.2480 
0.2164 
0.1667 
0.1312 
0.1055 
0.0864 
0.0720 

TABLE 1. Table of special functions of H 

5 

1 .oooo 
0.9969 
0.9877 
0.9725 
0.9518 
0.9261 
0.8959 
0.8620 
0.8249 
0.7854 
0.7442 
0.6595 
0.5755 
0.4956 
0.4224 
0.357 1 
0.2299 
0.1470 
0.0953 
0.0634 
0.0436 
0.0310 
0.0171 
0.0104 
0.0068 
0.0047 
0.0034 

Dynamic magnetic Jluids 
For a flowing magnetic fluid in a non-uniform magnetic field, there is an additional 

contribution to the body force acting on the fluid, due to the flow, through the 
magnetization. Although this is of O(P) smaller than the main contribution from the 
'magnetic pressure', it can be important as i t  cannot be absorbed in the fluid pressure. 

I n  the parameter regime under consideration, calculation of the bulk body force 
density, correct to O(P), amounts to  calculating the various contributions to the 
magnetization using the probability distributions discussed in $$4.14.4,  and sub- 
stituting them in (4.13). The result, in dimensional form, thus obtained is 

-= 9 { 3 - ( = . Y 3 - = . Y 2 = . Y l ) ( E : f i ~ - S ( H ) H  r2-  1 
ruc r 2 +  1 

r 2 - 1  9, Do D 1  +A --;T%(SL*A- m * V H '  + 6- - - 
D H  r2+1 H D 

( E : R V ) w ' - V p , ,  (4.16) 

where H' represents the non-dimensional magnetic field, the functions Pl, . . . , dp3  and 
7% are evaluated at  IH'( (= H), and S ( H )  is given by 

where 
We conclude this section with table 1, which gives all the functions of H that  have 

been represented in terms of ensemble averages. This table enables the stress tensor 
to be easily calculated for any value of H in the range from 0 to 10. 

is as defined in $4.4. 
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5. Shear and pipe flows 
Shear and pipe flows are of great practical significance, especially as magnetic fluids 

are often used as lubricants or to confine lubricants. Many experiments have been 
performed in order to determine the ‘effective viscosity’ for a magnetic fluid, 
although this notion is of limited value, because, even for simple shear flows, the 
‘effective viscosity’ is dependent on the direction of H. Several authors (McTague 
1969; Mozgovoy, Blums & Cebers 1973, for example, whose results have been 
discussed by Schliomis & Raikher 1980), have measured the effective viscosity of a 
magnetic fluid by Poiseuille’s method (i.e. in a pipe) for magnetic-field directions both 
perpendicular and parallel to the axis of the pipe; but we shall see later in this section 
that these directions are very special and give comparatively little information about 
the structure of the stress tensor. 

5.1. Simple shear jlouis with constant magnetic field 

We consider the shear flow with constant shear rate y 3  

so that 
u, = yy,  uy = u, = 0, 

Applying (4.9), we find that the three components of the particle stress tensor that 
represent components of force on the bounding surface y = 0 are given by 

= F,h;h;+$(F,+F,) (h;+h3+g(F3+F4) (h;-h;)++F,, 
Y C  

!% = F, h, h; + F, h, h, - F3 h, h,, 
YC 

= Fo h, hi h, + +(F, - F3 - F4 + F5) h, h,, 
YC 

where we have written I? = (hl ,  h,, h3). 
It is now evident that, if shear-flow experiments are performed with magnetic field 

directions coincident with one of the Cartesian axes, any term including products of 
different direction cosines hi will vanish, in which case such an experiment can extract 
no information about the coefficients of these vanishing terms. I n  order to determine 
all the functions F,, . . . , F5 experimentally, the three components of traction on a solid 
boundary for three independent magnetic field directions, none of which is coincident 
with any of the coordinate axes, must be measured for each value of H .  An experiment 
of this kind is essential for a complete assessment of current theories. 

The additional shear viscosity due to the magnetic interaction between suspended 
particles and the ambient magnetic field is denoted by most authors by the term 
‘magnetoviscosity ’ Ap. In our notation this is given by 



The constitutive equations for a magnetic fluid 

4.1 

3.9 

3.7 

3.1 

2.9 

0 1 2 3 4 5 6 7 8 9 1 0  
H 

5.0 

3.5 

3.0 

2.5 

205 

0 1 2  3 4 5 6 7 8 9 10 
H 

FIGURE 3. Graphs of contribution to 'effective viscosity ' from the particle stress 
cases (a) H parallel to (0,1, l), and (b)  H parallel to ( 1 , l .  0); the number on the 
of each curve denotes the corresponding axis ratio of the particles. 

versus H in the 
right-hand side 

As mentioned previously, and is clear from (5.1), a magnetic fluid is non-Newtonian, 
and so is not completely described by p -k Ap,  even at O(c)  ; in particular, i t  exhibits 
a non-zero first normal stress difference uS2 - uII. From (4.9) we find 

ua2 - (T1l = Fo h, h,(hi - h;) - 2 4  h, h,, 
YC 
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This phenomenon again would not be observed in shear or pipe flows with a magnetic 
field parallel to  a coordinate axis. 

We now present graphs (figure 3) of effective viscosity due to the particle stress 
for two magnetic-field directions. As there is no experimental data with which to  
compare these results, we leave discussion to  the case of pipe flows, where experimental 
data is available. 

5.2.  Pipe Jouls 

Since the flow in a pipe is unidirectional to leading order in c, it  may be considered 
locally as a shear flow. Defining coordinates as shown in figure 4, the three 
components of the particle stress considered in $5.1 become 

(5 .2)  
where hi, and h, are the components of A parallel and perpendicular to the axis of 
the pipe, and $6 is the azimuthal angle with origin in the direction of the perpendicular 
part of a. From (5 .2)  i t  can be seen that,  in general, the particle stress drives a small 
secondary flow O(c), and so it is not clear a t  first sight that the magnetoviscosity 
depends only on try2. However, for a circular pipe the secondary motion does not 
contribute at O(c), although i t  would have to be included for an elliptical pipe, for 
example. For most nowNewtonian fluids, unidirectional flows are possible only in 
circular pipes (Bird, Armstrong & Hassager 1977), but even that is not the case here, 
except when the magnetic field is parallel to the axis of the cylinder. 

Thus the magnetoviscosity, as determined by the Poiseuille method, is given by 

where an overbar denotes an average with respect to $6. From ( 5 . 2 )  we find that & 
is given by 

- a - = 4Fo hi h?+ $(F, + F5) (hi + 4hY) +&(Fa + F4) (&;-hi) + $Fz. 
Y C  

We compare this result with the experimental data of McTague (1969) in figure 5 for 
magnetic fields both perpendicular and parallel to the axis of the pipe. 

It was necessary to determine the scale of H from the data, as the precise particle 
sizes were not known. As the limiting value of *2 for large magnetic fields is a function 
of axis ratio, we have restricted comparison of the data to the case r = 1 (i.e. spherical 
particles). 

The greater part of the difference between theory and experiment is'almost 
certainly due to polydispersivity in particle size rather than shape. For example, the 
experimentally measured magnetoviscosity is greater than the theory for small Hand 
smaller than that for large H ,  which can be explained by observing that the larger 
particles are orientated more easily by the magnetic field, and so initially give a 
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Direction of 
magnetic field - 

FIQURE 4. Diagram defining local Cartesian axes for pipe flow. 

greater effect than the smaller particles, which are only significantly affected by much 
stronger magnetic fields. However, if all the particles were spherical, the 
magnetoviscosity a t  O ( c )  for H parallel to  the axis of the pipe would be simply twice 
that for H perpendicular to the axis, which is clearly not the case for the data given 
here. The dominant particle shape would seem to be one with axis ratio slightly less 
than unity (i.e. slightly disk-shaped), although the discrepancy between theory and 
experiment might equally well be attributed to  particle-particle interactions (i.e. an 
O(c2) effect). 

It is clear that  the magnetoviscosity determined for a pipe with magnetic field 
parallel to  its axis is identical to that for a shear flow with H = (1,0,0) ; however, 
it is interesting to note that the case of a pipe with perpendicular magnetic field also 
corresponds to  a shear flow. At O(c), for perpendicular field is exactly equal to 
gf2 for a shear flow with H parallel to (0,1,1), a result that is true for a polydisperse 
system a t  the same order. This observation could be used as a useful experimental 
tool for determining the importance of the O(c2) contribution to gf2, by finding the 
difference in viscosity as calculated from the shear and pipe flows, since in this 
particular case the result would be O(c2) ,  as O(1) and O(c)  terms cancel identically. 

6. Flow induced by rotating magnetic fields 
The purpose of this section is to demonstrate some surprising and initially 

counterintuitive phenomena that magnetic fluids exhibit. We discuss three simple 
experiments, which, although of no practical importance in themselves, illustrate the 
role of the antisymmetric part of the stress tensor in the dynamics of magnetic fluids. 
These are intended primarily as thought experiments, although qualitative verification 
should not prove too difficult. 

Each thought experiment consists of an infinitely long circular cylindrical tank, 
with a rigid boundary, filled with fluid (not necessarily just magnetic fluid), with a 
uniform magnetic field, of constant magnitude rotating with angular velocity $2, in 
the plane perpendicular to the axis of the cylinder, taken as the z-axis, which is 
assumed to be vertical. We shall assume that the radius R of the cylinder is small 
enough for any macroscopic flow induced by the magnetic field to be of sufficiently 
low Reynolds number for all inertia forces to be neglected, and so the Stokes-flow 
approximation is valid everywhere. 

Since the flow field is induced solely by the rotating magnetic field, E and S2 are 
O(c)  (i.e. proportional to the number density of magnetic particles), and since the 
particle stress tensor derived in $4.4 is correct to O(c), any of its terms containing 
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FIGURE 5. Graphs of contribution to ‘effective viscosity’ from the particle stress versus H in the 
cases (a) (h, , ,h,)  = (1.0); (b) (h,,,h,) = (0,l) ;  the number on the right-hand side of each curve 
denotes the corresponding axis ratio of the particles. In  each case the circles represent the 
experimental results of McTague (1969). scaled as if the particles were monodisperse with axis ratio 
of unity. 

E or S2 must be dropped for consistency, as they are O(c2). In this case, we find the 
appropriate form of the particle stress tensor is given by 

QP = -c{F,(AR+AA)+F,(RR-AA)}, 

so the full stress tensor, correct to O(e) ,  is 

Q = -*I+ 2pE + & *  L - ,ucF3{AA+ AA), 
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L = 2pcF5SZ,2, 
where p is the pressure and 

which is the couple density due to the applied magnetic field. 

209 

Thought experiment 1 : homogeneous magnetic fluid 

This is an interesting thought experiment in that i t  often seems to be implicitly 
assumed that the induced rotation of magnetic particles due to  the rotating magnetic 
field must manifest itself in some bulk motion of the fluid as a whole (Berkovsky 1978). 
There is also some confusion as to  what boundary conditions should be applied a t  
the rigid wall of the tank. The equation of fluid motion in this situation is simply 
W*o = 0, and since we have assumed that the magnetic fluid is homogeneous, so too 
will be the stress due to  the rotating magnetic field (see (6.l)) ,  which implies that 

- v p + p v 2 u  = 0,  (6.2) 

since the gradient of a homogeneous stress is identically zero. The boundary condition 
at the rigid wall will be simply the standard no-slip condition u = 0, as appropriate 
for all hydrodynamic problems where the radius of curvature of the boundary is large 
compared with the range over which van der Waals forces act. Thus the only solution 
to (6.2), which is simply the standard Stokes-flow equation, is u = 0, which may be 
proved from the uniqueness theorem for viscous flows. However, as in all suspension- 
mechanical problems, there exists a depleted layer near the wall (i.e. a layer where 
the volume fraction of particles is less than that in the bulk medium just away from 
the wall) of thickness O(a),  as it is impossible for a particle to overlap the wall. So 
in this region there will be gradients in the ensemble-average stress, which will in 
general induce a small flow, although this flow will be of microscopic proportions, 
giving rise to ensemble-averaged velocities O(Q,a), and so is negligible in any 
macroscopic description. 

The result obtained above may be surprising a t  first sight, since the rotating 
magnetic field will certainly induce a rotation of the individual magnetic particles, 
and so a stress on the fluid. It should be pointed out, however, that  fluid motions 
are not induced by stresses, but rather by gradients of stresses, and in the experiment 
under consideration the region of space occupied by the magnetic fluid is one of 
constant stress. The natural question then arises as to  what happens when the 
magnetic fluid is inhomogeneous. 

Thought experiment 2 : pure solvent core 

For the following thought experiment we take a tank with non-magnetic fluid in the 
region 0 < r < Rl(@ and magnetic fluid in the region Rl(@ < r < R, where ( r ,  0) are 
polar coordinates in the plane perpendicular to  the axis of the cylinder. I n  the case 
of a real experiment with gravity present, it would be necessary to ensure that the 
two fluids are of the same density to avoid buoyancy-driven convection. In  the 
subsequent analysis, we shall assume that the surface tension between the two fluids 
is zero. This could be arranged if both fluids were suspensions, one a suspension of 
magnetic particles, and the other of non-magnetic particles, with the same solvent 
used in both cases, although in the rest of this section we shall take the non-magnetic 
fluid to be pure solvent for simplicity, We shall also assume that the experiment is 
of sufficiently short duration that translational Brownian motion does not have time 
to blur the interface significantly, and so we may consider the two fluids to  be 
effectively immiscible. 

Suppose that R, = R,+ f(0, t ) ,  where R, is a constant and f = 0 a t  t = 0. Then a t  
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least for sufficiently small times, i.e. for the first few rotations of the magnetic field, 
R, = R,(1 + O ( c ) ) ,  in which case we may consider the effect of the two forcing terms 
in (6.1) separately; more precisely, we may solve 

V * ( - p / + 2 p E + + * L )  = 0, (6.3) 

V.(-p/+2,uE-pcF3{&i!?+AA)) = 0 (6.4) 
separately, and then superpose the two solutions. 

Solving (6.3), we notice that the expression for u is radially symmetric; so in this 
case, if R, = R, initially, i t  will remain so. We may now solve for the flow by balancing 
stresses on coaxial cylindrical shells, from which we find that the region r < R, 
undergoes solid-body rotation, and in the region R, < r < R 

u=-- REL (-2). 1 

where u is defined by u = ( O , u , O )  in cylindrical polar coordinates. So the angular 
velocity of the rigidly rotating core is 

4P r 

2 0  
giving the surprising result that  the fluid rotates in the opposite direction to the 
magnetic field. This can be easily understood, however, by recalling experiment 1, 
and imagining a passive boundary a t  r = R,. The rotating magnetic field applies a 
couple to  the central region tending to rotate i t  with the field and this couple is exactly 
balanced by a hydrodynamic stress due to  the magnetic fluid in the outer region. In  
the case of experiment 2, the outer region is essentially the same, whereas the inner 
region is pure solvent and hence has no couple, and so the central core region 
experiences a net couple tending to rotate in the opposite direction to the magnetic 
field. 

We will now show that the so-far neglected term of the stress does not give any 
contribution to O(c)  to the time-averaged bulk flow, when averages are taken over 
several cycles of the magnetic field, and is in fact identically zero for spherical 
particles. Again the velocity field satisfies V’u = 0, which in each region reduces to 
the standard Stokes-flow equation, so the term -pcF3(i!?i!?+ i!?@ is only important 
in the stress jump boundary condition, which at O(c) can be applied at r = R,. 

We shall now solve (6.4), which is best done by working in terms of a stream 
function ~, noting that it must have the same angular dependence as the magnetic- 
forcing term. I n  this case 

where i = 1 if r < R,, i = 2 if r > R,, and we have taken the magnetic field to  be in 
the direction 0 = SZ, t .  The coefficients a,, . . . , d,, a2, . . . , d, are determined by applying 
the boundary conditions at r = R,, R, and insisting that the solution is regular at 
r = 0. We find 

( ~ 3 -  1 ) / 1 2 ~ 3  
- (A2 - 1)/’SA2 

0 
0 

1 /8A2 
0 

1 / 1 2 ~ 3  

-1 
24 

where A = (R/R,)2.  
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The most interesting aspect of this flow field is that  the boundary between magnetic 
fluid and pure solvent does not in general remain circular. The time evolution of this 
boundary (i.e. the time evolution of f )  may be calculated to O(c)  by 

We see that the boundary between the two regions has a wave-like disturbance of 
period n, which propagates a t  the same speed as the magnetic field. The sign of this 
disturbance is determined by F3, which is positive for prolate spheroids, zero for 
spheres and negative for oblate spheroids, so this would be an amusing experiment 
for a direct determination of the dominant particle shape in a magnetic fluid, although, 
as can readily be seen, this is a small effect, the axis ratio having to be of order 10 
for &F3 to be approximately unity. 

Thought experiment 3 : magnetic-jluid core 
I n  this thought experiment, which is included merely for the sake of completeness, 
the magnetic fluid and the pure solvent of experiment 2 are interchanged. The 
governing equations are exactly the same as for experiment 2, except for the stress 
jump condition a t  r = R,, which is reversed. Thus the instantaneous velocity field 
to O(c)  is exactly equal and opposite to that for thought experiment 2, in which case, 
the fluid rotates with the magnetic field. 

7. The effect of ultrasound on a magnetic fluid 
In  previous sections we have considered flows having small PBclet number, which 

allowed the stress tensor to  be calculated from a quasi-steady analysis, since the 
macroscopic timescale is much longer than the fluid memory time O(D) .  It is clear 
that  a study of flows with timescales of the same order as the Brownian relaxation 
would reveal much more about particle sizes, and hence give better estimates of the 
degree of aggregation, because, the larger the aggregates or particles, the longer the 
relaxation time. I n  effect, the timescale of the flow could be tuned to the Brownian 
relaxation time of particles of a particular shape and size, so that measured bulk 
properties are most strongly influenced by these particles. It is then possible, at least 
in principle, to invert this information to  give a distribution of particle sizes, including 
aggregates. 

For practical reasons, the most obvious choice of flow is that  induced by the 
propagation of an ultrasonic wave with characteristic frequency w = O(D) .  If we 
further restrict ourselves to  small-amplitude waves, i t  is again permissible to assume 
that the perturbation probability distribution PI is small, allowing us to linearize the 
diffusion equation for P. I n  the rest of this section, we shall also restrict ourselves, 
without loss of generality, to the case of monochromatic plane waves, since it is 
possible to  recover the result for a general linear wave by superposition via an inverse 
Fourier transform. This is potentially very useful as some experiments use high- 
frequency pulses rather than continuous waves (Isler & Chung 1978). 

The most often measured properties of an ultrasonic signal are the velocity and 
attenuation as functions of direction. The same information is obtained from each 
about the structure of the magnetic fluid, although, as will be mentioned later, in 
a stable suspension the direction-dependent part of the sound speed is relatively small 
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in magnitude, so for the rest of this section we shall only consider the problem of 
ultrasonic attenuation, as this is directly related to viscous dissipation and so is the 
easiest of the two phenomena to understand from a purely hydrodynamical point of 
view. 

As the wavelength for an ultrasonic signal is very much larger than a particle 
lengthscale, being of the order of 1 mm for a water-based magnetic fluid, we may 
again use a linear approximation for the ambient flow. Taking the direction of 
propagation of the ultrasonic wave coincident with the x-axis, we have 

( v q  = r22, 

where r is a measure of the local rate of compression and is purely a function of time. 
However, if we assume the particles of the magnetic fluid are totally incompressible, 
it is more convenient to decompose ( V U ) ~  into an isotropic compression and a pure 

( V U ) ~  = if/+ E, straining motion, giving 

where 
E = i r ( i  -: 0 0  -!I. 

The isotropic term has no effect on the orientational probability distribution, and 
contributes nothing to the angular dependence of the ultrasonic attenuation, and so 
we shall leave discussion of this term until later in the section. 

Defining E = T 0 / D ,  where I‘, is a typical value of r, and non-dimensionalizing Vu 
with respect to ro and other quantities as described in $2, the appropriate form of 
the evolution equation (4.2) for P is 

r2-  1 E*mP(m, t) + HP(m, t) - VP(m, t) aP(m, t )  
at 

This implies 

(7.2) 
r2-  1 
r2+ 1 

(V2 + H -  V - io) q5 = e - E: {mH,- 3mm}, 

where q5 = PJP0 and we have assumed that all time-dependent quantities are 
proportional to eiwt. Since q5 is proportional to e[(r2- l ) / ( r 2  + l)] E, it  may be written 
in the form 

E: T 
r2-1  

for some function T satisfying 

(V2 + H V - i o )  T = /+&(mW+ Hm) - (Hcos 8+ 3) mm. (7.3) 

It follows from (7.3) that T may be written as 

T = a ( e ; H , w ) l ? l ? + p ( B ;  H,o)(l?m+rnl?)+y(8; H,w)mm+isotropic term, 

where the isotropic term is unimportant as E is traceless, and cos8 = m-l?. 
Substituting this expression for T into (7.3), we find 

a‘‘ + (3 cot 8- Hsin 8) a‘-iwa- (4 cosec 8) F + 2 H p  = 0, 

p” + (5 cot 8- Hsin 8) p’- (2+ HcosO+iw) p- (2 cosec 8) 7’ + Hy = &H, 

y” + (7 cot 8 + H sin 8) y’ - (6 + 2Hcos 8 + iw) y = - ( H  cos 8 + 3), 

where a prime denotes differentiation with respect to 8, and the boundary conditions 
for a, p and y are simply those of regularity at 8 = 0,n. 
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We are now in a position to calculate the various components of the stress tensor 
as in $4. It is much more convenient, however, to calculate the dissipation due to 
the particle stress directly, as many of its terms simplify significantly on contraction 
with the symmetric traceless tensor E. This allows much additional grouping of terms 
which would not have been possible otherwise, and so considerably simplifies the 
calculation. In this case, after some heavy algebra, the dissipation 5BB due to 
Brownian stresses, in dimensional form, is given by 

Here 

and 

c4 = ~ ( c o s ~ e - ~ c o s ~ e +  I ) ,  

where P,(cos 8) are Legendre polynomials of degree i with P,(cos 8) G 0 for i negative. 
The dissipation gH due to hydrodynamic particle stresses is the same as before, and 
is given by 

gH = 4pc{(A0(r)Y4)  (E:fi12)z+2(2A0(r)$ Y + B 0 ( r ) g 2 )  

H + 
In addition to the contributions to the dissipation already considered, we must 
include a contribution due to the straining motion in the ambient flow, namely 2pE: E, 
and one due to the isotropic compressional motion, accurate to O(c) ,  although these 
terms do not contribute to the angular dependence. 

Attenuation coejicient 
The time-averaged internal energy density u due to the acoustic wave is given by 

u= K F .  

The overbar denotes a time average over several cycles and K = KO( 1 - c )  + K,, where 
KO is a material constant, which is the value of K for a pure solvent and K ,  is the 
contribution to K from the entropic energy. - -  Assuming that the change in uover one 
wavelength is small compared with U ,  U satisfies 

c;vu= --iZT, 

where c, is the velocity of the signal, and LBT is the total dissipation, giving the 
attenuation coefficient 

a, = - 
c, K P  ' 
% 
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which is therefore independent of I-. Aithough, at O ( c ) ,  c, and K depend on the 
magnetic field, this dependence is only via entropic or thermodynamic energies, 
which, in practice, are always small compared with the compressional energy in the 
solvent, since they contain a factor Vmolecule/ V, (where Vmolecule is the space occupied 
by a molecule). 

Shear waves 

On ultrasonic timescales, a magnetic fluid behaves very much as a viscoelastic 
material, which gives rise to  the possibility of ultrasonic shear (or transverse) waves. 
These may be analysed in essentially the same way as the compressional waves 
already considered. 

For the propagation of a wave, i t  is necessary for the energy to oscillate between 
two forms commonly called ‘kinetic ’ and ‘potential ’ energy. I n  this case, the ‘kinetic ’ 
energy is simply the kinetic energy of the bulk flow, and the ‘potential’ energy is 
the entropic energy, or the work done by the bulk motion in rotating the suspended 
particles away from their equilibrium orientations. If the frequency w of the shear 
wave is much less than the Brownian diffusivity, the system is heavily damped 
because almost all the entropic energy will diffuse away in one cycle, in which case 
the fluid behaves very inelastically. However, even if w is greater than or the order 
of D ,  there is substantial dissipation due to hydrodynamic forces, since the entropic 
driving force is O(c) and the viscous dissipation is O(1).  Thus the amplitude of the 
shear waves decays by a factor O(c)  in one wavelength. It can be shown, by a simple 
order-of-magnitude calculation, that  the shear waves propagate with velocity 
O(nrnH/p), where p is the density of the magnetic fluid; this velocity is approximately 
equal to 1 m s-l for a standard suspension. However, these waves are of little practical 
interest because since they are unable to  propagate much further than the order of 
1 pm, energy transport due to  shear waves can be neglected. 

Discussion of experimental results 

The direction-dependent part of a. is thus given by 

a t  = ( a , ( € : ~ ~ Z + a , ( € . f f ) 2 ) / T L ,  

where a,, a2 may be calculated from the dissipation due to  the particle stress. 
Unfortunately no result of this general form gives a satisfactory fit to the data of 
Isler & Chung (1978), but i t  is clear that, correct to O(c) ,  the direction-dependent part 
of the attenuation of a suspension must be of this form, assuming that particles are 
small compared with the wavelength of the signal. So we must conclude that in the 
experiment of Isler & Chung (1978) particle interactions are important and dominate 
over the O ( c )  result. This is then a strong indication of aggregation, and other 
anomalous effects which were mentioned by Isler & Chung could also indicate 
aggregation. I n  a paper by Chung & Isler (1978), response times of several seconds 
are measured, indicating the presence of very large aggregates. It is possible to have 
large response times in a stable magnetic fluid if i t  is near its Curie temperature 
(defined in §3), where large numbers of particles will behave in a similar manner to 
the domains in a ferromagnet, although this will only occur at temperatures much 
lower than those in the two papers mentioned above. However, in a theoretical paper 
by Gotoh, Isler & Chung (1980), using a theory with adjustable parameters, they 
obtain a remarkable fit with the data of Isler & Chung (1978), although they seem 
to  have overlooked the fact that  their theoretical curve of attenuation versus 
direction is not analytic everywhere, contrary to what would be possible from any 
suspension-mechanically based theory. 
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8. Conclusions 
In  this paper we have derived equations to describe the rheology of magnetic fluids 

in most situations of practical interest. I n  particular, the main results of this paper 
are summarized below. 

1 .  The bulk magnetization is determined for a fluid a t  rest as a function of the 
applied magnetic field, with inclusion of the effect of the magnetic interactions 
between particles ($3). The first correction to the Langevin equation for magnetization 
thus derived significantly improves the agreement between predicted and measured 
magnetic pressures (see figure 2). 

2. The bulk stress tensor is calculated, in the limit of small Pkclet number, including 
the effects of the time and space dependences of the magnetic field ($4). (The time 
dependence of the bulk flow can be neglected a t  the order of the calculation.) For 
calculational purposes it is assumed that the particles are spheroidal ; the calculation 
for general particle shapes has yet to be performed. It is noteworthy, however, that 
the tensorial structure of the stress derived here (4.12) is the most general available 
(which is not the case for spherical particles), so that even for more complex particle 
shapes only the multiplying coefficients will be altered. These results are then applied 
to  shear and pipe flows ( Q S ) ,  as flows of this type appear in many applications where 
magnetic fluids are used as lubricants or magnetic seals. When comparing theory and 
experiment, one should note that real magnetic fluids are polydisperse, though for 
all the experiments performed to date the particle size and shape distributions were 
not measured. Simply choosing the distribution that gives ‘best fit’ could well give 
misleadingly good results, since this distribution might be far from the actual one. 
For this reason comparison between theory and experiment is restricted in this paper 
to monodisperse suspensions for which the agreement is found to be fair. 

3. A magnetic suspension affords a rare example of a material for which the stress 
tensor is non-symmetric. Some of the surprising flow consequences are explored in 
$ 6 by means of simple thought experiments involving rotating magnetic fields. 
4. Finally, in $ 7  we analyse the attenuation of ultrasound with characteristic 

frequency of the same order as the microscopic relaxation time (due to Brownian 
motion). We also explain how the results obtained could be used as a sensitive means 
of determining the degree of aggregation. 

The next step in this field must almost certainly be experimental; in particular, 
new shear and pipe flow experiments, with magnetic field direction not aligned with 
any of the principal axes of flow (as described in $ 5 )  would be of interest, especially 
for fluids with known particle size and shape distributions. For a thorough test of the 
results in this paper, they should be used to determine the macroscopic behaviour 
of systems with space- and time-varying magnetic fields. As mentioned, ultrasound 
experiments are potentially useful in determining the degree of aggregation ; however, 
for a direct test of the theory, careful experiments with no aggregation need to be 
performed. 
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